3.4.39 \(\int \frac {1}{x^3 (a+b x^3)^2} \, dx\) [339]

3.4.39.1 Optimal result
3.4.39.2 Mathematica [A] (verified)
3.4.39.3 Rubi [A] (verified)
3.4.39.4 Maple [C] (verified)
3.4.39.5 Fricas [A] (verification not implemented)
3.4.39.6 Sympy [A] (verification not implemented)
3.4.39.7 Maxima [A] (verification not implemented)
3.4.39.8 Giac [A] (verification not implemented)
3.4.39.9 Mupad [B] (verification not implemented)

3.4.39.1 Optimal result

Integrand size = 13, antiderivative size = 146 \[ \int \frac {1}{x^3 \left (a+b x^3\right )^2} \, dx=-\frac {5}{6 a^2 x^2}+\frac {1}{3 a x^2 \left (a+b x^3\right )}+\frac {5 b^{2/3} \arctan \left (\frac {\sqrt [3]{a}-2 \sqrt [3]{b} x}{\sqrt {3} \sqrt [3]{a}}\right )}{3 \sqrt {3} a^{8/3}}-\frac {5 b^{2/3} \log \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{9 a^{8/3}}+\frac {5 b^{2/3} \log \left (a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2\right )}{18 a^{8/3}} \]

output
-5/6/a^2/x^2+1/3/a/x^2/(b*x^3+a)-5/9*b^(2/3)*ln(a^(1/3)+b^(1/3)*x)/a^(8/3) 
+5/18*b^(2/3)*ln(a^(2/3)-a^(1/3)*b^(1/3)*x+b^(2/3)*x^2)/a^(8/3)+5/9*b^(2/3 
)*arctan(1/3*(a^(1/3)-2*b^(1/3)*x)/a^(1/3)*3^(1/2))/a^(8/3)*3^(1/2)
 
3.4.39.2 Mathematica [A] (verified)

Time = 0.06 (sec) , antiderivative size = 129, normalized size of antiderivative = 0.88 \[ \int \frac {1}{x^3 \left (a+b x^3\right )^2} \, dx=\frac {-\frac {9 a^{2/3}}{x^2}-\frac {6 a^{2/3} b x}{a+b x^3}+10 \sqrt {3} b^{2/3} \arctan \left (\frac {1-\frac {2 \sqrt [3]{b} x}{\sqrt [3]{a}}}{\sqrt {3}}\right )-10 b^{2/3} \log \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )+5 b^{2/3} \log \left (a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2\right )}{18 a^{8/3}} \]

input
Integrate[1/(x^3*(a + b*x^3)^2),x]
 
output
((-9*a^(2/3))/x^2 - (6*a^(2/3)*b*x)/(a + b*x^3) + 10*Sqrt[3]*b^(2/3)*ArcTa 
n[(1 - (2*b^(1/3)*x)/a^(1/3))/Sqrt[3]] - 10*b^(2/3)*Log[a^(1/3) + b^(1/3)* 
x] + 5*b^(2/3)*Log[a^(2/3) - a^(1/3)*b^(1/3)*x + b^(2/3)*x^2])/(18*a^(8/3) 
)
 
3.4.39.3 Rubi [A] (verified)

Time = 0.31 (sec) , antiderivative size = 155, normalized size of antiderivative = 1.06, number of steps used = 11, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.769, Rules used = {819, 847, 750, 16, 1142, 25, 27, 1082, 217, 1103}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{x^3 \left (a+b x^3\right )^2} \, dx\)

\(\Big \downarrow \) 819

\(\displaystyle \frac {5 \int \frac {1}{x^3 \left (b x^3+a\right )}dx}{3 a}+\frac {1}{3 a x^2 \left (a+b x^3\right )}\)

\(\Big \downarrow \) 847

\(\displaystyle \frac {5 \left (-\frac {b \int \frac {1}{b x^3+a}dx}{a}-\frac {1}{2 a x^2}\right )}{3 a}+\frac {1}{3 a x^2 \left (a+b x^3\right )}\)

\(\Big \downarrow \) 750

\(\displaystyle \frac {5 \left (-\frac {b \left (\frac {\int \frac {2 \sqrt [3]{a}-\sqrt [3]{b} x}{b^{2/3} x^2-\sqrt [3]{a} \sqrt [3]{b} x+a^{2/3}}dx}{3 a^{2/3}}+\frac {\int \frac {1}{\sqrt [3]{b} x+\sqrt [3]{a}}dx}{3 a^{2/3}}\right )}{a}-\frac {1}{2 a x^2}\right )}{3 a}+\frac {1}{3 a x^2 \left (a+b x^3\right )}\)

\(\Big \downarrow \) 16

\(\displaystyle \frac {5 \left (-\frac {b \left (\frac {\int \frac {2 \sqrt [3]{a}-\sqrt [3]{b} x}{b^{2/3} x^2-\sqrt [3]{a} \sqrt [3]{b} x+a^{2/3}}dx}{3 a^{2/3}}+\frac {\log \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{3 a^{2/3} \sqrt [3]{b}}\right )}{a}-\frac {1}{2 a x^2}\right )}{3 a}+\frac {1}{3 a x^2 \left (a+b x^3\right )}\)

\(\Big \downarrow \) 1142

\(\displaystyle \frac {5 \left (-\frac {b \left (\frac {\frac {3}{2} \sqrt [3]{a} \int \frac {1}{b^{2/3} x^2-\sqrt [3]{a} \sqrt [3]{b} x+a^{2/3}}dx-\frac {\int -\frac {\sqrt [3]{b} \left (\sqrt [3]{a}-2 \sqrt [3]{b} x\right )}{b^{2/3} x^2-\sqrt [3]{a} \sqrt [3]{b} x+a^{2/3}}dx}{2 \sqrt [3]{b}}}{3 a^{2/3}}+\frac {\log \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{3 a^{2/3} \sqrt [3]{b}}\right )}{a}-\frac {1}{2 a x^2}\right )}{3 a}+\frac {1}{3 a x^2 \left (a+b x^3\right )}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {5 \left (-\frac {b \left (\frac {\frac {3}{2} \sqrt [3]{a} \int \frac {1}{b^{2/3} x^2-\sqrt [3]{a} \sqrt [3]{b} x+a^{2/3}}dx+\frac {\int \frac {\sqrt [3]{b} \left (\sqrt [3]{a}-2 \sqrt [3]{b} x\right )}{b^{2/3} x^2-\sqrt [3]{a} \sqrt [3]{b} x+a^{2/3}}dx}{2 \sqrt [3]{b}}}{3 a^{2/3}}+\frac {\log \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{3 a^{2/3} \sqrt [3]{b}}\right )}{a}-\frac {1}{2 a x^2}\right )}{3 a}+\frac {1}{3 a x^2 \left (a+b x^3\right )}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {5 \left (-\frac {b \left (\frac {\frac {3}{2} \sqrt [3]{a} \int \frac {1}{b^{2/3} x^2-\sqrt [3]{a} \sqrt [3]{b} x+a^{2/3}}dx+\frac {1}{2} \int \frac {\sqrt [3]{a}-2 \sqrt [3]{b} x}{b^{2/3} x^2-\sqrt [3]{a} \sqrt [3]{b} x+a^{2/3}}dx}{3 a^{2/3}}+\frac {\log \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{3 a^{2/3} \sqrt [3]{b}}\right )}{a}-\frac {1}{2 a x^2}\right )}{3 a}+\frac {1}{3 a x^2 \left (a+b x^3\right )}\)

\(\Big \downarrow \) 1082

\(\displaystyle \frac {5 \left (-\frac {b \left (\frac {\frac {1}{2} \int \frac {\sqrt [3]{a}-2 \sqrt [3]{b} x}{b^{2/3} x^2-\sqrt [3]{a} \sqrt [3]{b} x+a^{2/3}}dx+\frac {3 \int \frac {1}{-\left (1-\frac {2 \sqrt [3]{b} x}{\sqrt [3]{a}}\right )^2-3}d\left (1-\frac {2 \sqrt [3]{b} x}{\sqrt [3]{a}}\right )}{\sqrt [3]{b}}}{3 a^{2/3}}+\frac {\log \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{3 a^{2/3} \sqrt [3]{b}}\right )}{a}-\frac {1}{2 a x^2}\right )}{3 a}+\frac {1}{3 a x^2 \left (a+b x^3\right )}\)

\(\Big \downarrow \) 217

\(\displaystyle \frac {5 \left (-\frac {b \left (\frac {\frac {1}{2} \int \frac {\sqrt [3]{a}-2 \sqrt [3]{b} x}{b^{2/3} x^2-\sqrt [3]{a} \sqrt [3]{b} x+a^{2/3}}dx-\frac {\sqrt {3} \arctan \left (\frac {1-\frac {2 \sqrt [3]{b} x}{\sqrt [3]{a}}}{\sqrt {3}}\right )}{\sqrt [3]{b}}}{3 a^{2/3}}+\frac {\log \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{3 a^{2/3} \sqrt [3]{b}}\right )}{a}-\frac {1}{2 a x^2}\right )}{3 a}+\frac {1}{3 a x^2 \left (a+b x^3\right )}\)

\(\Big \downarrow \) 1103

\(\displaystyle \frac {5 \left (-\frac {b \left (\frac {-\frac {\log \left (a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2\right )}{2 \sqrt [3]{b}}-\frac {\sqrt {3} \arctan \left (\frac {1-\frac {2 \sqrt [3]{b} x}{\sqrt [3]{a}}}{\sqrt {3}}\right )}{\sqrt [3]{b}}}{3 a^{2/3}}+\frac {\log \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{3 a^{2/3} \sqrt [3]{b}}\right )}{a}-\frac {1}{2 a x^2}\right )}{3 a}+\frac {1}{3 a x^2 \left (a+b x^3\right )}\)

input
Int[1/(x^3*(a + b*x^3)^2),x]
 
output
1/(3*a*x^2*(a + b*x^3)) + (5*(-1/2*1/(a*x^2) - (b*(Log[a^(1/3) + b^(1/3)*x 
]/(3*a^(2/3)*b^(1/3)) + (-((Sqrt[3]*ArcTan[(1 - (2*b^(1/3)*x)/a^(1/3))/Sqr 
t[3]])/b^(1/3)) - Log[a^(2/3) - a^(1/3)*b^(1/3)*x + b^(2/3)*x^2]/(2*b^(1/3 
)))/(3*a^(2/3))))/a))/(3*a)
 

3.4.39.3.1 Defintions of rubi rules used

rule 16
Int[(c_.)/((a_.) + (b_.)*(x_)), x_Symbol] :> Simp[c*(Log[RemoveContent[a + 
b*x, x]]/b), x] /; FreeQ[{a, b, c}, x]
 

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 217
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^( 
-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] & 
& (LtQ[a, 0] || LtQ[b, 0])
 

rule 750
Int[((a_) + (b_.)*(x_)^3)^(-1), x_Symbol] :> Simp[1/(3*Rt[a, 3]^2)   Int[1/ 
(Rt[a, 3] + Rt[b, 3]*x), x], x] + Simp[1/(3*Rt[a, 3]^2)   Int[(2*Rt[a, 3] - 
 Rt[b, 3]*x)/(Rt[a, 3]^2 - Rt[a, 3]*Rt[b, 3]*x + Rt[b, 3]^2*x^2), x], x] /; 
 FreeQ[{a, b}, x]
 

rule 819
Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(-( 
c*x)^(m + 1))*((a + b*x^n)^(p + 1)/(a*c*n*(p + 1))), x] + Simp[(m + n*(p + 
1) + 1)/(a*n*(p + 1))   Int[(c*x)^m*(a + b*x^n)^(p + 1), x], x] /; FreeQ[{a 
, b, c, m}, x] && IGtQ[n, 0] && LtQ[p, -1] && IntBinomialQ[a, b, c, n, m, p 
, x]
 

rule 847
Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(c*x 
)^(m + 1)*((a + b*x^n)^(p + 1)/(a*c*(m + 1))), x] - Simp[b*((m + n*(p + 1) 
+ 1)/(a*c^n*(m + 1)))   Int[(c*x)^(m + n)*(a + b*x^n)^p, x], x] /; FreeQ[{a 
, b, c, p}, x] && IGtQ[n, 0] && LtQ[m, -1] && IntBinomialQ[a, b, c, n, m, p 
, x]
 

rule 1082
Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*S 
implify[a*(c/b^2)]}, Simp[-2/b   Subst[Int[1/(q - x^2), x], x, 1 + 2*c*(x/b 
)], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /; Fre 
eQ[{a, b, c}, x]
 

rule 1103
Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> S 
imp[d*(Log[RemoveContent[a + b*x + c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, 
e}, x] && EqQ[2*c*d - b*e, 0]
 

rule 1142
Int[((d_.) + (e_.)*(x_))/((a_) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> S 
imp[(2*c*d - b*e)/(2*c)   Int[1/(a + b*x + c*x^2), x], x] + Simp[e/(2*c) 
Int[(b + 2*c*x)/(a + b*x + c*x^2), x], x] /; FreeQ[{a, b, c, d, e}, x]
 
3.4.39.4 Maple [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3.

Time = 3.58 (sec) , antiderivative size = 74, normalized size of antiderivative = 0.51

method result size
risch \(\frac {-\frac {5 b \,x^{3}}{6 a^{2}}-\frac {1}{2 a}}{x^{2} \left (b \,x^{3}+a \right )}+\frac {5 \left (\munderset {\textit {\_R} =\operatorname {RootOf}\left (a^{8} \textit {\_Z}^{3}+b^{2}\right )}{\sum }\textit {\_R} \ln \left (\left (-4 \textit {\_R}^{3} a^{8}-3 b^{2}\right ) x -a^{3} b \textit {\_R} \right )\right )}{9}\) \(74\)
default \(-\frac {1}{2 a^{2} x^{2}}-\frac {b \left (\frac {x}{3 b \,x^{3}+3 a}+\frac {5 \ln \left (x +\left (\frac {a}{b}\right )^{\frac {1}{3}}\right )}{9 b \left (\frac {a}{b}\right )^{\frac {2}{3}}}-\frac {5 \ln \left (x^{2}-\left (\frac {a}{b}\right )^{\frac {1}{3}} x +\left (\frac {a}{b}\right )^{\frac {2}{3}}\right )}{18 b \left (\frac {a}{b}\right )^{\frac {2}{3}}}+\frac {5 \sqrt {3}\, \arctan \left (\frac {\sqrt {3}\, \left (\frac {2 x}{\left (\frac {a}{b}\right )^{\frac {1}{3}}}-1\right )}{3}\right )}{9 b \left (\frac {a}{b}\right )^{\frac {2}{3}}}\right )}{a^{2}}\) \(118\)

input
int(1/x^3/(b*x^3+a)^2,x,method=_RETURNVERBOSE)
 
output
(-5/6*b/a^2*x^3-1/2/a)/x^2/(b*x^3+a)+5/9*sum(_R*ln((-4*_R^3*a^8-3*b^2)*x-a 
^3*b*_R),_R=RootOf(_Z^3*a^8+b^2))
 
3.4.39.5 Fricas [A] (verification not implemented)

Time = 0.28 (sec) , antiderivative size = 187, normalized size of antiderivative = 1.28 \[ \int \frac {1}{x^3 \left (a+b x^3\right )^2} \, dx=-\frac {15 \, b x^{3} - 10 \, \sqrt {3} {\left (b x^{5} + a x^{2}\right )} \left (-\frac {b^{2}}{a^{2}}\right )^{\frac {1}{3}} \arctan \left (\frac {2 \, \sqrt {3} a x \left (-\frac {b^{2}}{a^{2}}\right )^{\frac {2}{3}} - \sqrt {3} b}{3 \, b}\right ) + 5 \, {\left (b x^{5} + a x^{2}\right )} \left (-\frac {b^{2}}{a^{2}}\right )^{\frac {1}{3}} \log \left (b^{2} x^{2} + a b x \left (-\frac {b^{2}}{a^{2}}\right )^{\frac {1}{3}} + a^{2} \left (-\frac {b^{2}}{a^{2}}\right )^{\frac {2}{3}}\right ) - 10 \, {\left (b x^{5} + a x^{2}\right )} \left (-\frac {b^{2}}{a^{2}}\right )^{\frac {1}{3}} \log \left (b x - a \left (-\frac {b^{2}}{a^{2}}\right )^{\frac {1}{3}}\right ) + 9 \, a}{18 \, {\left (a^{2} b x^{5} + a^{3} x^{2}\right )}} \]

input
integrate(1/x^3/(b*x^3+a)^2,x, algorithm="fricas")
 
output
-1/18*(15*b*x^3 - 10*sqrt(3)*(b*x^5 + a*x^2)*(-b^2/a^2)^(1/3)*arctan(1/3*( 
2*sqrt(3)*a*x*(-b^2/a^2)^(2/3) - sqrt(3)*b)/b) + 5*(b*x^5 + a*x^2)*(-b^2/a 
^2)^(1/3)*log(b^2*x^2 + a*b*x*(-b^2/a^2)^(1/3) + a^2*(-b^2/a^2)^(2/3)) - 1 
0*(b*x^5 + a*x^2)*(-b^2/a^2)^(1/3)*log(b*x - a*(-b^2/a^2)^(1/3)) + 9*a)/(a 
^2*b*x^5 + a^3*x^2)
 
3.4.39.6 Sympy [A] (verification not implemented)

Time = 0.18 (sec) , antiderivative size = 58, normalized size of antiderivative = 0.40 \[ \int \frac {1}{x^3 \left (a+b x^3\right )^2} \, dx=\frac {- 3 a - 5 b x^{3}}{6 a^{3} x^{2} + 6 a^{2} b x^{5}} + \operatorname {RootSum} {\left (729 t^{3} a^{8} + 125 b^{2}, \left ( t \mapsto t \log {\left (- \frac {9 t a^{3}}{5 b} + x \right )} \right )\right )} \]

input
integrate(1/x**3/(b*x**3+a)**2,x)
 
output
(-3*a - 5*b*x**3)/(6*a**3*x**2 + 6*a**2*b*x**5) + RootSum(729*_t**3*a**8 + 
 125*b**2, Lambda(_t, _t*log(-9*_t*a**3/(5*b) + x)))
 
3.4.39.7 Maxima [A] (verification not implemented)

Time = 0.29 (sec) , antiderivative size = 128, normalized size of antiderivative = 0.88 \[ \int \frac {1}{x^3 \left (a+b x^3\right )^2} \, dx=-\frac {5 \, b x^{3} + 3 \, a}{6 \, {\left (a^{2} b x^{5} + a^{3} x^{2}\right )}} - \frac {5 \, \sqrt {3} \arctan \left (\frac {\sqrt {3} {\left (2 \, x - \left (\frac {a}{b}\right )^{\frac {1}{3}}\right )}}{3 \, \left (\frac {a}{b}\right )^{\frac {1}{3}}}\right )}{9 \, a^{2} \left (\frac {a}{b}\right )^{\frac {2}{3}}} + \frac {5 \, \log \left (x^{2} - x \left (\frac {a}{b}\right )^{\frac {1}{3}} + \left (\frac {a}{b}\right )^{\frac {2}{3}}\right )}{18 \, a^{2} \left (\frac {a}{b}\right )^{\frac {2}{3}}} - \frac {5 \, \log \left (x + \left (\frac {a}{b}\right )^{\frac {1}{3}}\right )}{9 \, a^{2} \left (\frac {a}{b}\right )^{\frac {2}{3}}} \]

input
integrate(1/x^3/(b*x^3+a)^2,x, algorithm="maxima")
 
output
-1/6*(5*b*x^3 + 3*a)/(a^2*b*x^5 + a^3*x^2) - 5/9*sqrt(3)*arctan(1/3*sqrt(3 
)*(2*x - (a/b)^(1/3))/(a/b)^(1/3))/(a^2*(a/b)^(2/3)) + 5/18*log(x^2 - x*(a 
/b)^(1/3) + (a/b)^(2/3))/(a^2*(a/b)^(2/3)) - 5/9*log(x + (a/b)^(1/3))/(a^2 
*(a/b)^(2/3))
 
3.4.39.8 Giac [A] (verification not implemented)

Time = 0.27 (sec) , antiderivative size = 131, normalized size of antiderivative = 0.90 \[ \int \frac {1}{x^3 \left (a+b x^3\right )^2} \, dx=\frac {5 \, b \left (-\frac {a}{b}\right )^{\frac {1}{3}} \log \left ({\left | x - \left (-\frac {a}{b}\right )^{\frac {1}{3}} \right |}\right )}{9 \, a^{3}} - \frac {b x}{3 \, {\left (b x^{3} + a\right )} a^{2}} - \frac {5 \, \sqrt {3} \left (-a b^{2}\right )^{\frac {1}{3}} \arctan \left (\frac {\sqrt {3} {\left (2 \, x + \left (-\frac {a}{b}\right )^{\frac {1}{3}}\right )}}{3 \, \left (-\frac {a}{b}\right )^{\frac {1}{3}}}\right )}{9 \, a^{3}} - \frac {5 \, \left (-a b^{2}\right )^{\frac {1}{3}} \log \left (x^{2} + x \left (-\frac {a}{b}\right )^{\frac {1}{3}} + \left (-\frac {a}{b}\right )^{\frac {2}{3}}\right )}{18 \, a^{3}} - \frac {1}{2 \, a^{2} x^{2}} \]

input
integrate(1/x^3/(b*x^3+a)^2,x, algorithm="giac")
 
output
5/9*b*(-a/b)^(1/3)*log(abs(x - (-a/b)^(1/3)))/a^3 - 1/3*b*x/((b*x^3 + a)*a 
^2) - 5/9*sqrt(3)*(-a*b^2)^(1/3)*arctan(1/3*sqrt(3)*(2*x + (-a/b)^(1/3))/( 
-a/b)^(1/3))/a^3 - 5/18*(-a*b^2)^(1/3)*log(x^2 + x*(-a/b)^(1/3) + (-a/b)^( 
2/3))/a^3 - 1/2/(a^2*x^2)
 
3.4.39.9 Mupad [B] (verification not implemented)

Time = 5.87 (sec) , antiderivative size = 146, normalized size of antiderivative = 1.00 \[ \int \frac {1}{x^3 \left (a+b x^3\right )^2} \, dx=\frac {5\,{\left (-1\right )}^{1/3}\,b^{2/3}\,\ln \left ({\left (-1\right )}^{1/3}\,a^{1/3}-b^{1/3}\,x\right )}{9\,a^{8/3}}-\frac {\frac {1}{2\,a}+\frac {5\,b\,x^3}{6\,a^2}}{b\,x^5+a\,x^2}-\frac {5\,{\left (-1\right )}^{1/3}\,b^{2/3}\,\ln \left ({\left (-1\right )}^{1/3}\,a^{1/3}+2\,b^{1/3}\,x+{\left (-1\right )}^{5/6}\,\sqrt {3}\,a^{1/3}\right )\,\left (\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )}{9\,a^{8/3}}+\frac {5\,{\left (-1\right )}^{1/3}\,b^{2/3}\,\ln \left ({\left (-1\right )}^{1/3}\,a^{1/3}+2\,b^{1/3}\,x-{\left (-1\right )}^{5/6}\,\sqrt {3}\,a^{1/3}\right )\,\left (-\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )}{9\,a^{8/3}} \]

input
int(1/(x^3*(a + b*x^3)^2),x)
 
output
(5*(-1)^(1/3)*b^(2/3)*log((-1)^(1/3)*a^(1/3) - b^(1/3)*x))/(9*a^(8/3)) - ( 
1/(2*a) + (5*b*x^3)/(6*a^2))/(a*x^2 + b*x^5) - (5*(-1)^(1/3)*b^(2/3)*log(( 
-1)^(1/3)*a^(1/3) + 2*b^(1/3)*x + (-1)^(5/6)*3^(1/2)*a^(1/3))*((3^(1/2)*1i 
)/2 + 1/2))/(9*a^(8/3)) + (5*(-1)^(1/3)*b^(2/3)*log((-1)^(1/3)*a^(1/3) + 2 
*b^(1/3)*x - (-1)^(5/6)*3^(1/2)*a^(1/3))*((3^(1/2)*1i)/2 - 1/2))/(9*a^(8/3 
))